1 Half cells for the following redox half equations were connected using a wire and salt bridge.

 $Cu^{2^+} + 2e^- \Rightarrow Cu$ $E^\circ = +0.34 V$ $Fe^{2^+} + 2e^- \Rightarrow Fe$ $E^\circ = -0.41 V$

a Write the standard cell notation (cell representation) for this cell. **Fe(s)** | **Fe²⁺(aq)** | | **Cu²⁺(aq)** | **Cu(s)**

ELECTROCHEMISTRY (A)

- b Calculate the emf of this cell. +0.75 V
- c Write a balanced equation for the reaction that takes place in this cell. $Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$
- **d** State three essential conditions in order for this cell to operate under standard conditions.
 - 1 **298K**
 - 2 1.0 mol $dm^{-3} Cu^{2+}$
 - 3 1.0 mol dm⁻³ Fe²⁺
- 2 The electrode potential of the Zn^{2+}/Zn half cell was measured against the standard hydrogen electrode (SHE). In this cell, the SHE was placed on the left, and an emf of -0.76 V was recorded.
 - **a** Write the standard cell notation (cell representation) for this cell.

 $Pt(s) | H_2(g) | H^{+}(aq) | | Zn^{2+}(aq) | Zn(s)$

- **b** Calculate the electrode potential of the Zn²⁺/Zn half cell. **–0.76 V**
- c Write a balanced equation for the reaction that takes place in this cell. $Zn + 2H^+ \rightarrow Zn^{2+} + H_2$
- d What is the role of the platinum in the SHE? to provide a surface for electron transfer