

Solutions containing Fe^{3+} can be reduced to Fe^{2+} using zinc.

Half cells for the following redox half equations were connected using a wire and salt bridge under standard conditions. The Fe^{3+}/Fe^{2+} half cell also contained a piece of platinum.

 $Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$ $E^\circ = -0.76 V$ $Fe^{3+}(aq) + e^- \rightleftharpoons Fe^{2+}(aq)$ $E^\circ = +0.77 V$

a Write the standard cell notation (cell representation) for this cell.

Zn(s) | Zn²⁺(aq) | | Fe³⁺(aq), Fe²⁺(aq) | Pt(s)

- **b** Calculate the emf of this cell. +1.53 V
- **c** What was the role of the platinum in the Fe^{3+}/Fe^{2+} half cell? to provide a surface for electron transfer (1)
- d What was the role of the salt bridge in this cell and how does it work?

to complete the circuit; inert ions move through the salt bridge

- e Write a balanced equation for the reaction that takes place in this cell. $Zn + 2Fe^{3+} \rightarrow Zn^{2+} + 2Fe^{2+}$ (2)
- **f** The Fe³⁺/Fe²⁺ half cell contained a mixture of iron(III) sulfate and iron(II) sulfate. Give the concentration of each reagent in the mixture for this to be done under standard conditions.

iron(III) sulfate 0.5 mol dm⁻³ Fe₂(SO₄)₃

iron(II) sulfate 1.0 mol dm⁻³ FeSO₄

g If the concentration of Zn²⁺ ions was changed from 1.0 mol dm⁻³ to 0.5 mol dm⁻³, how would this affect the emf of the cell. Explain your answer.

Zn²⁺/Zn equilibrium moves left releasing more electrons so making Zn²⁺/Zn potential more negative making emf greater

(3)

(2)

(2)

(1)

(2)