ELECTROLYSIS (A)

- 1 The electrolysis of molten aluminium fluoride produces aluminium (Al) at the negative electrode and fluorine (F_2) at the positive electrode.
 - Explain why solid aluminium fluoride does not conduct electricity but molten aluminium fluoride does.
 as a solid the ions cannot move to carry charge
 but when molten the ions can move to carry charge
 - **b** Give the formula of the ions in aluminium fluoride: aluminium ions Al³⁺ fluoride ions F⁻
 - c Give the formula of aluminium fluoride: AIF₃
 - d Explain why aluminium ions go to the negative electrode.

 aluminium ions are positive and they are attracted to the negative electrode as opposite charges attract
 - e Write a half equation for the formation of aluminium at the negative electrode. Al³+ + 3e⁻ → Al
 - f Explain whether the formation of aluminium is an oxidation or reduction process.

 reduction as the aluminium ions gain electrons
 - g Explain whether the negative electrode is the anode or cathode.
 cathode as this is where reduction occurs
 - h Write a half equation for the formation of fluorine at the positive electrode. $2F^- 2e^- \rightarrow F_2$
- **2** Complete the table about the electrolysis of some molten ionic compounds.

molten substance	formula	negative electrode half-equation	positive electrode half-equation
calcium oxide	CaO	Ca ²⁺ + 2e ⁻ → Ca	$2O^{2-} - 4e^- \rightarrow O_2$
magnesium bromide	MgBr ₂	Mg ²⁺ + 2e ⁻ → Mg	2Br ⁻ – 2e ⁻ → Br ₂
sodium chloride	NaCl	Na ⁺ + e ⁻ → Na	2Cl ⁻ – 2e ⁻ → Cl ₂

© www.CHEMSHEETS.co.uk 8-March-2019 Chemsheets GCSE 1327