ELECTROLYSIS (B)

1 Write balanced half equations for these conversions.

a
$$Mg^{2+}$$
 ions \rightarrow Mg atoms $Mg^{2+} + 2e^{-} \rightarrow Mg$

b
$$Al^{3+}$$
 ions $\rightarrow Al$ atoms $Al^{3+} + 3e^{-} \rightarrow Al$

c
$$l^-ions \rightarrow l_2$$
 molecules $2l^- - 2e^- \rightarrow l_2$

d
$$O^{2-}$$
 ions $\rightarrow O_2$ molecules $2O^{2-} - 4e^- \rightarrow O_2$

2 Complete the table to show which ions are discharged and what is formed at each electrode in these electrolysis processes.

substance	molten or aqueous	formula	positive electrode		negative electrode	
			ions discharged	product	ions discharged	product
potassium bromide	molten	KBr	Br ⁻	Br ₂	K⁺	K
potassium bromide	aqueous	KBr	Br ⁻	Br ₂	H ⁺	H ₂
silver(I) sulfate	aqueous	Ag ₂ SO ₄	OH ⁻	O ₂	Ag⁺	Ag
magnesium nitrate	aqueous	Mg(NO ₃) ₂	OH⁻	O ₂	H ⁺	H ₂

3 Explain why hydrogen rather than sodium is formed at the negative electrode during the electrolysis of aqueous sodium chloride.

it is easier to discharge H⁺ ions than Na⁺ ions as hydrogen is less reactive than sodium

© www.CHEMSHEETS.co.uk 15-March-2019 Chemsheets GCSE 1331