

STARTER FOR 10 ...

0.2.1. Rearranging equations

1. The amount of substance in moles (n) in a solution can be calculated when the concentration given in mol/dm ${ }^{3}$ (c) and volume (v) in cm^{3} are known by using the equation:

$$
\mathrm{n}=\frac{\mathrm{cv}}{1000}
$$

a. Rearrange this equation making c the subject of the equation.
b. Rearrange this equation making v the subject of the equation.
2. The density of a substance can be calculated from its mass (m) and volume (v) using the equation:

$$
\mathrm{d}=\frac{\mathrm{m}}{\mathrm{v}}
$$

a. Rearrange this equation so that the mass of a substance can be calculated given its density and volume.
Chemists most commonly work with masses expressed in grams and volumes in cm^{3}. However, the SI unit for density is $\mathrm{kg} / \mathrm{m}^{3}$.
b. Write an expression for the calculation of density in the SI unit of $\mathrm{kg} / \mathrm{m}^{3}$ when the mass (m) of the substance is given in g and the volume (v) of the substance is given in cm^{3}.
3. The de Broglie relationship relates the wavelength of a moving particle (λ) with its momentum (p) through Planck's constant (h):

$$
\lambda=\frac{\mathrm{h}}{\mathrm{p}}
$$

a. Rearrange this equation to make momentum (p) the subject of the formula. Momentum can be calculated from mass and velocity using the following equation.

$$
\mathrm{p}=\mathrm{mv}
$$

b. Using this equation and the de Broglie relationship, deduce the equation for the velocity of the particle.
4. The kinetic energy (KE) of a particle in a time of flight mass spectrometer can be calculated using the following equation.

$$
\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}
$$

Rearrange this equation to make v the subject of the equation.
(2 marks)

STARTER FOR 10...

0. TRANSITION SKILLS Answers

0.2 Basic mathematical competencies

0.2.1. Rearranging equations

1.

a. $c=\frac{1000 n}{v} \quad$ (1 mark)
b. $v=\frac{1000 n}{c}$
(1 mark)
2.
a. $m=d \times v$
(1 mark)
b. $d=\frac{m \times 10^{-3}}{v \times 10^{-6}}=\frac{m}{v \times 10^{-3}}$

1 mark for both parts of the fraction correct, 1 mark for cancelling down the $\times 10^{-6}$ to $\times 10^{-3}$.
(2 marks)
3.
a. $p=\frac{h}{\lambda}$
(1 mark)
b. $v=\frac{h}{\lambda m}$

1 mark for substitution of $p=m v$ into the first equation and 1 mark for successful rearrangement.
(2 marks)
4.
$v=\sqrt{\frac{K E}{0.5 m}}$ or $v=\sqrt{\frac{2 K E}{m}}$
1 mark for first rearrangement moving 0.5 m underneath the $\mathrm{KE}, 1$ mark for dealing with the v^{2} by addition of the square root.
(2 marks)

0.2.2. BODMAS

1. a. 28
b. 40
C. 8
d. 45
e. 6
f. 40
