B2 1 (a Coal, hydroelectric and wind boxes ticked (b) (i) Copper is a good conductor of thermal energy/heat **B1** Black surface is a good / the best absorber of radiation / infra red (ii) (Temp rise =) 72 - 20 = 52 (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ C₁ 4100 J Α1 (iii) Efficiency = (power) output/(power) input (\times 100) $\frac{(4100/5)\times100}{}$ OR $\frac{(4100\times100)}{}$ OR rearranged OR 70 C1 power input power input Power input = 1200 W Α1 [Total: 9] (a energy/heat required to increase temperature of 1 kg / 1 g / unit mass (of the substance) B1 by 1°C / 1K / unit temperature **B1** C1 **(b)** $E = mc\Delta\theta$ in any form OR $(c =) E \div m\Delta\theta$ E = Pt in any form OR 420 × 95 (= 39 900) C1 $\Delta\theta$ = [40.5 – 19.5] OR 21 C1 $(c = 39\,900 \div 42 =) 950\,\text{J/(kg °C)}$ **A1** (c) any two separate points from: max. B2 lagging / insulation (around block) OR insulate (the block) raise temperature of block by a smaller amount OR heat for a shorter time OR use lower power heater for same time OR higher power for same temperature rise / shorter time polish the surface of the block OR wrap the block in shiny material OR paint (shiny) white reduce initial temperature of block (to below room temperature) OR raise temperature of room reduce draughts

[Total: 8]

3	(a	box 2:	Z measures p. d.	B1
		box 4:	X and Y are different materials.	B1
		box 6:	X and Y are electrical conductors.	В1
	(b)	more sei	M1	
		more (gr	reater volume of) expansion	A1
	(c)	not linea	ar OR linearity worse/less	B1
		correctly	relates movement of thread to diameter of capillary	B1
4	(a	same dis	stance moved (by thread) for same temperature change	В1
	(b)	o) -10°C		В1
	(c)	 any two from: longer stem bigger bulb OR more liquid narrower bore OR thinner thread liquid with greater expansivity 		max. B2
	(d)	(i) falls	from 100 °C with a decreasing gradient AND at a faster rate	В1
		finis	hes horizontal along 20 °C line	B1
		(ii) only	y bottom box ticked	B1
				[Total: 7]

В1 5 (a energy/heat needed to change state of substance/melt (from solid to liquid at constant temperature/melting point) per kg/per unit mass В1 C1 **(b) (i)** $(l_i=)$ Q ÷ m in any form: words, symbols, numbers 340 J/kg OR 336 J/g OR equivalent in J/kg Α1 C1 (ii) $(c =) Q \div [m\Delta T]$ in any form: words, symbols, numbers 4.1 J / (g °C) OR 4100 J / (kg °C) (iii) cold water denser AND sinks B1 convection (current) OR circulation OR warmer water rises B1 [Total: 8] B1 (a c = Q/($m\Delta\theta$) d = m/V in any form OR (m =) Vd OR 0.0036×1000 C1 (b) 3.6 kg **A**1 (ii) (E =) Pt OR 8500×60 OR $510\,000$ J OR 5.1×10^5 J C1 $\Delta\theta = Q/mc OR \Delta\theta = Pt/mc in any form OR 5.1 \times 10^5/(3.6 \times 4200)$ C₁ $= 34 (^{\circ}C)$ A1 OR $\Delta\theta = P/(mass per second \times c)$ (C1) $= 8500/[(0.0036/60) \times 4200]$ (C1) $= 34 (^{\circ}C)$ (A1) outflow temp = 15 + 33.73 = 49 °C В [Total: 7]