Question	Answer	Mark
1(a)	Gas molecules (very) far apart OR empty space between gas molecules Molecules of liquid (very) close together/ compact OR are touching (each other)	B1
(b)(i)	Faster/more energetic water molecules evaporate/escape/leave Slower/less energetic molecules remain (so temperature is lower)	
(b)(ii)	Water in wide container AND has water with larger surface (area) Rate of evaporation higher/faster/quicker OR higher chance of evaporation	B1
		B1

Question	Answer	Mark
2(a)	One of 1,2 or 3 : 1 Molecules move faster OR have more k.e./momentum 2 Molecules hit walls more often/more frequently 3 Molecules hit walls with greater force/impulse/harder	B1
(b)	1 mark for each of 1, 2 and 3 in (a) not given as answer to (a)	B2
(c)(i)	$\begin{aligned} & \mathrm{PV}=\text { constant } O R P_{1} V_{1}=P_{2} V_{2} O R 98 \times 4800=P \times 7200 \\ & 65 \mathrm{kPa} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$
(c)(ii)	To prevent the balloon bursting (as its volume increases) OR to reduce the pressure inside the balloon OR pressure difference between inside and outside balloon rises	B1
		Total: 6

3 (a (i) $\mathrm{P} \times \mathrm{V}$ values are 7500 or about 7500
OR If P /pressure doubles, $\mathrm{V} /$ volume halves OR vice versa $\quad \mathrm{B} 1$
(so) PV = constant OR P $\propto 1 / \mathrm{V}$ OR either in words B1
(ii) temperature B1
(b) (i) $\mathrm{P}=$ hdg OR $5.0 \times 10 \times 1000 \quad \mathrm{C} 1$

50000 Pa or 50 kPa A1
(ii) Volume of bubble increases
Mass of gas stays the same
Density of gas decreases \quad B2
[Total: 7]
$4 \quad$ (a (i) any one from:
(molecules) move randomly / in random directions
(molecules) have high speeds
(molecules) collide with each other / with walls
[max 1]
(ii) collisions with walls/rebounding causes change in momentum (of molecules) [1]
force is rate of change of momentum / force needed to change momentum
(b) (i) $p_{1} V_{1}=p_{2} V_{2}$ OR $300 \times 100(\times 0.12)=p_{2} \times 0.40(\times 0.12)$

750 kPa
(ii) (molecules) collide with walls more often owtte OR more collisions with walls per second or per unit time owtte [1] greater force per unit area
(a (i) any 2 from: max. B2

- liquid molecules not in fixed positions / can move about / move past each other OR solid molecules have a fixed position
- liquid molecules have random arrangement OR solid molecules arranged regularly / in patterns / layers / lattice
- liquid molecules are (slightly) further apart (than solid molecules) OR reverse argument
(ii) energy / work / thermal energy / (latent) heat required AND
to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the potential energy of the molecules
(b) (i) $E=m l$ in any form OR $m l$ OR 1.65×330000
$=540000 \mathrm{~J}$ OR 544500 J A1
(ii) chemical (energy in body) converted to thermal / internal (energy)
6 (a $p_{1} V_{1}=p_{2} V_{2}$ in any form $\operatorname{OR}\left(p_{1}=\right) p_{2} V_{2} \div V_{1}$ C1
$p_{1} \times 470=800 \times 60 \mathrm{OR}\left(p_{1}=\right) 800 \times 60 \div 470$
102 OR 100 kPa A1
(b) molecules would move faster/have more KE B1
more (frequent)/harder collisions with walls/cylinder/piston B1
pressure increases B1
(c) use of $p=F \div A$ in any form $O R(F=) p A$ C1
$(F=) 4400 \mathrm{~N}$ A1
7 (a any two of motion of smoke particles: random/haphazard/unpredictable movement; sudden changes of direction/zig-zag motion; appear/disappear from view OR go out of/come into focus; B2
any two of conclusions about air molecules:
collide with smoke particles OR smoke particles collide with/moved by air molecules;air molecules fast(er);air molecules small(er) / light(er);
move randomly; B2
(b) (i) 1 (the piston) moves to the right/out(wards)/is pushed away B1
2 (the pressure of the gas) remains constant B1
(ii) (pressure of the gas) increases B1more frequent collisions (of gas molecules) with piston/walls / containerOR (gas molecules) collide with piston/walls/container with great(er) forceB1

