Question	Answer	Mark
1(a)	Gas molecules (very) far apart OR empty space between gas molecules Molecules of liquid (very) close together/compact OR are touching (each other)	B1 B1
(b)(i)	Faster/more energetic water molecules evaporate/escape/leave Slower/less energetic molecules remain (so temperature is lower)	B1 B1
(b)(ii)	Water in wide container AND has water with larger surface (area) Rate of evaporation higher/faster/quicker OR higher chance of evaporation	B1 B1
		Total: 6

Question	Answer	Mark
2(a)	One of 1, 2 or 3: 1 Molecules move faster OR have more k.e./momentum 2 Molecules hit walls more often/more frequently 3 Molecules hit walls with greater force/impulse/harder	B1
(b)	1 mark for each of 1, 2 and 3 in (a) not given as answer to (a)	B2
(c)(i)	$PV = constant OR P_1V_1 = P_2V_2 OR 98 \times 4800 = P \times 7200$ 65 kPa	C1 A1
(c)(ii)	To prevent the balloon bursting (as its volume increases) OR to reduce the pressure inside the balloon OR pressure difference between inside and outside balloon rises	B1
		Total: 6

3	(a	(i)	P × V values are 7500 or about 7500	
	((-)	OR If P/pressure doubles, V/volume halves OR vice versa (so) PV = constant OR P α 1/V OR either in words	B1 B1
		(ii)	temperature	B1
	(b)	(i)	P = hdg OR 5.0 × 10 × 1000 50 000 Pa or 50 kPa	C1 A1
		(ii)	Volume of bubble <u>increases</u> Mass of gas <u>stays the same</u> Density of gas <u>decreases</u>	B2
				[Total: 7]
4	(a	(i)	any one from: (molecules) move randomly / in random directions (molecules) have high speeds	. 41
			(molecules) collide with each other / with walls	[max 1]
		(ii)	collisions with walls/rebounding causes change in momentum (of molecules) force is rate of change of momentum / force needed to change momentum	[1] [1]
	(b)	(i)	$p_1V_1 = p_2V_2 \text{ OR } 300 \times 100 \text{ (\times 0.12)} = p_2 \times 0.40 \text{ (\times 0.12)}$	[1]
			750 kPa	[1]
		(ii)	(molecules) collide with walls more often owtte OR more collisions with walls per second or per unit time owtte greater force per unit area	[1] [1]

(a (i) any 2 from: max. B2 5 liquid molecules not in fixed positions / can move about / move past each other OR solid molecules have a fixed position liquid molecules have random arrangement OR solid molecules arranged regularly / in patterns / layers / lattice liquid molecules are (slightly) further apart (than solid molecules) OR reverse argument (ii) energy / work / thermal energy / (latent) heat required AND to break bonds (between molecules) / to overcome attractive forces (between the molecules) / to increase the potential energy of the molecules B1 C1 **(b) (i)** E = ml in any form OR ml OR 1.65×330000 = 540 000 J OR 544 500 J Α1 (ii) chemical (energy in body) converted to thermal / internal (energy) **B1** [Total: 6] (a $p_1V_1 = p_2V_2$ in any form OR $(p_1 =) p_2V_2 \div V_1$ C1 $p_1 \times 470 = 800 \times 60 \text{ OR } (p_1 =) 800 \times 60 \div 470$ 102 OR 100 kPa A1 (b) molecules would move faster/have more KE **B1** more (frequent)/harder collisions with walls/cylinder/piston **B1** В1 pressure increases (c) use of $p = F \div A$ in any form OR (F =) pAC1 (F =) 4400 NΑ1

(a any two of motion of smoke particles: random/haphazard/unpredictable movement; sudden changes of direction/zig-zag motion: appear/disappear from view OR go out of/come into focus; B2 any two of conclusions about air molecules: collide with smoke particles OR smoke particles collide with/moved by air molecules; air molecules fast(er); air molecules small(er) / light(er); move randomly: B2 (b) (i) 1 (the piston) moves to the right/out(wards) /is pushed away B1 2 (the pressure of the gas) remains constant B1 В1 (ii) (pressure of the gas) increases more frequent collisions (of gas molecules) with piston/walls/container OR (gas molecules) collide with piston/walls/container with great(er) force В1

[Total: 8]