(a) (i) (magnetic) field (lines) of magnet cut by turns / coil / wire OR (magnetic) field linked with coil changes ..... B1
(ii) 1 (needle of meter) deflects to the left (and returns to zero) ..... B1
2 (needle of meter) deflects to right and left (alternately) ..... B1 OR to and fro
(b) (i) $N_{\mathrm{p}} / N_{\mathrm{s}}=V_{\mathrm{p}} / V_{\mathrm{s}}$ in any form OR ( $\left.N_{\mathrm{s}}=\right) N_{\mathrm{p}} V_{\mathrm{s}} / V_{\mathrm{p}}$ OR $8000 \times 6 / 240$ ..... C1
OR ( $\left.V_{p} / V_{\mathrm{s}}=\right) 40$( $N_{\mathrm{S}}=$ ) 200A1
(ii) 1 ( $P=I V=0.050 \times 240=) 12 \mathrm{~W}$ ..... B1
$20.9 \times 12$ OR 10.8 OR $I_{\mathrm{s}} V_{\mathrm{s}}=0.9 I_{\mathrm{p}} V_{\mathrm{p}}$ OR $I_{\mathrm{s}}=0.9 I_{\mathrm{p}} V_{\mathrm{p}} / V_{\mathrm{s}}$ ..... C1
OR $0.9 \times 0.05 \times 240 / 6$$\left(I_{\mathrm{s}}=\right) 1.8 \mathrm{~A}$ ecf 1.A1
2 (a (i) electromagnetic induction OR mutual induction ..... B1
(ii) copper ..... B1
good conductivity OR good conductor ..... B1
(b) (i) $N_{\mathrm{P}} \div N_{\mathrm{S}}=V_{\mathrm{P}} \div V_{\mathrm{S}}$ in any form OR $N_{\mathrm{P}} V_{\mathrm{S}} \div V_{\mathrm{P}}$ accept in ratio format ..... C1
400 ..... A1
(ii) (current in secondary $=$ ) $4 \times 1.5$ OR $6.0(\mathrm{~A})$
$I_{\mathrm{P}} V_{\mathrm{P}}=I_{\mathrm{S}} V_{\mathrm{S}}$ in any form OR $I_{\mathrm{S}} V_{\mathrm{S}} \div V_{\mathrm{P}}$ ..... C1
0.30 OR 0.3A ..... A1
3 (a) (magnetic) field (lines) of magnet cuts coils (of solenoid) OR (magnetic) field in solenoid changes ..... B1
(b) meter deflects in opposite direction ..... B1
deflection is greater (than initially) OR for shorter time ..... B1
magnet moving faster ..... B1
more field lines cut per second ORopposite pole and direction and end of solenoidB1
(c) any two from: ..... max. B2

- stronger magnet
- use a solenoid (of same length) with more turns
- use a more sensitive meter
- use wires of smaller resistance for solenoid or connecting wires
- drop from further up
[Total: 7]
4 (a (step-down) transformer ..... B1
(b) (alternating current causes) magnetic field in core/iron magnetic field changes/alternates field cuts/links with secondary coil OR secondary coil cuts field ..... B1
e.m.f. / voltage induced (and current flows in lamp) OR induced current (in lamp) ..... B1
(c) $\quad V_{1} / V_{2}=N_{1} / N_{2}$ in any form $O R\left(N_{1}=\right) N_{2} \times V_{1} / V_{2} O R 450 \times 240 / 12$ $=9000$ ..... A1
(ii) tick $4^{\text {th }}$ box ..... B1
[Total: 8]
5 (a) $\geq 3$ horizontal lines in gap by eye ..... B1
$\geq 4$ evenly spaced horizontal lines filling $3 / 4$ of width of gap AND arrows $L$ to $R$ ..... B1
(b) (i) ammeter deflects/gives a reading OR registers a current ..... B1
wire cuts the field lines o.w.t.t.e. ..... M1
e.m.f./voltage/current induced/produced/generated ..... A1
(ii) 1 reading/deflection/current increased ..... B1
2 reading/deflection/current reversed ignore magnitude ..... B1
[Total: 7]
6 (a) less power/energy lost OR heat generated (in cables) ..... B1
smaller current ..... B1
$P=V I$ OR $P=I^{2} R$ ..... B1
(b) (i) (laminated) iron core ..... B1
(ii) (connected to) primary (coil) ..... B1
(iii) $\quad\left(N_{\mathrm{S}}=\right) N_{\mathrm{P}} V_{\mathrm{S}} / V_{\mathrm{P}}$ OR $400 \times 115000 / 5000$ 9200 (turns) ..... A1
(c) less insulation needed OR safer OR devices designed for 230 V ..... B1

