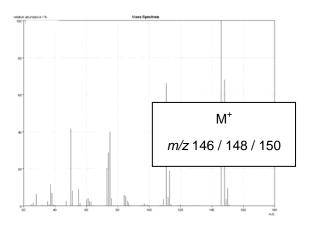

10.1.3. Molecular mass spectrometry

Use the elemental analysis data together with the mass spectrum to propose a molecular formula for the unknowns A to C. Easy! (3 marks for each)


Unknown A

C 61.02%; H 15.25%; N 23.73%

Unknown B

C 49.48%; H 5.15%; O 16.49%; N 28.87%

Unknown C

C 49.02%; H 2.74%; CI 48.23%

BONUS MARK Why does unknown C appear to have three molecular ions each differing in mass by 2? (1 mark)

$$81 = y\% ag{1 mark}$$

Therefore the percentage of the lightest isotope present is 81%

10.1.3. Molecular mass spectrometry

(1 mark for calculations, 1 mark for empirical formula, 1 mark for molecular formula of each unknown)

Unknown A

(1-aminopropane)

	C	Н	N
Mass in 100 g	61.02	15.25	23.73
Moles in 100 g	5.09	15.25	1.70
Ratio	3	9	1

Empirical formula = C_3H_9N

Molecular weight of empirical formula = $59 = M^{+}$, therefore molecular formula = C_3H_aN

Unknown B

(caffeine)

	С	Н	N	0
Mass in 100 g	49.48	5.15	28.87	16.49
Moles in 100 g	4.12	5.15	2.06	1.03
Ratio	4	5	2	1

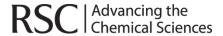
Empirical formula = $C_4H_5N_2O$

Molecular weight of empirical formula = 97; $M^{+} = 194$, therefore molecular formula = $C_8H_{10}N_4O_2$

Unknown C

(1,4-

dichlorobenzene)


	С	Н	CI
Mass in 100 g	49.02	2.74	48.23
Moles in 100 g	4.09	2.74	1.36
Ratio	3	2	1

Empirical formula = C_3H_2CI

Molecular weight of empirical formula = 73.5; $M^{+} = 146/148/150$, therefore molecular formula = $C_{6}H_{4}CI_{2}$

BONUS MARK – The mass spectrum of unknown C appears to have three molecular ion peaks owing to the common isotopes of CI, ³⁵CI and ³⁷CI which are found naturally in a 3:1 ratio. As the unknown contains two chlorine atoms, this results in three possible combinations of these isotopes in the molecule.

Chlorine Isotopes in unknown C	Molecular weight of molecule containing these isotopes	Probability
³⁵ CI : ³⁵ CI	146	$3 \times 3 = 9$
³⁵ Cl : ³⁷ Cl	148	3 x 1 = 3
³⁷ Cl : ³⁵ Cl	148	1 × 3 = 3
³⁷ CI : ³⁷ CI	150	1 x 1 = 1

