1 Copper contains two isotopes, ${}^{63}_{29}$ Cu and ${}^{65}_{29}$ Cu. Give the formula of the species that reaches the detector first when a sample of copper is analysed by time of flight mass spectrometry.

MASS SPECTROMETRY

63 29**Cu**+

2 Mass spectrometry showed an element to contain the following isotopes. Find the relative atomic mass of this element. Give your answer to 1 decimal place.

m/z	10	11
abundance / %	19.9	80.1

 $A_{\rm r} = \frac{[10 \, x \, 19.9] + [11 \, x \, 80.1]}{19.9 + 80.1} = 10.8$

3 Lithium contains the isotopes ${}_{3}^{6}$ Li and ${}_{3}^{7}$ Li. It has a relative atomic mass of 6.94. Find the percentage abundance of ${}_{3}^{7}$ Li in lithium.

let % of ${}^{7}_{3}$ Li = a $\frac{[6(100-a)]+[7a]}{100} = 6.94$ 600 - 6a + 7a = 694a = 94

4 Beryllium contains one isotope only, ${}_{4}^{9}Be$. Calculate the time of flight of ${}_{4}^{9}Be^{+}$ of this isotope. Give your answer to the appropriate number of significant figures.

$\int m$	t	= time of flight (s)
$t = d \sqrt{\frac{m}{2KE}}$	m	= mass of particle (kg)
	KE	= kinetic energy (J)
	d	= length of flight tube (m)

kinetic energy	3.65 x 10 ⁻¹⁴ J
length of flight tube	85 cm
mass of electron	9.1094 x 10 ⁻³¹ kg
mass of proton	1.6726 x 10 ⁻²⁷ kg
mass of neutron	1.6749 x 10 ⁻²⁷ kg

 $m = [3 \times 9.1094 \times 10^{-31}] + [4 \times 1.6726 \times 10^{-27}] + [5 \times 1.6749 \times 10^{-27}] = 1.5068 \times 10^{-26} \text{ kg}$

$$t = d\sqrt{\frac{m}{2KE}} = 0.85 \sqrt{\frac{1.5068 \, x \, 10^{-26}}{2 \, x \, 3.65 \, x \, 10^{-14}}} = 3.9 \, x \, 10^{-7} \, s$$