

The pharmacists have had an accident and managed to mix up all their iron tablets. They have three foils of tablets (labelled A-C) which they know must have come from one of the bottles below;

Help the pharmacists work out which tablets are which by interpreting the results of their analyses below.

One of **Tablet A** (1.05 g) was dissolved in excess sulfuric acid and made up to 250 cm³ in a volumetric flask. A 25.00 cm³ aliquot of this solution required 21.65 cm³ of a 0.005 mol dm⁻³ solution of KMnO₄ for complete oxidation.

2.10 g of **Tablet B** (2 tablets) were dissolved in excess sulfuric acid and made up to 500 cm³ in a volumetric flask. A 25.00 cm³ aliquot of this solution required 19.45 cm³ of a 0.010 mol dm⁻³ solution of KMnO₄ for complete oxidation. One of **Tablet C** (1.21 g) was dissolved in excess sulfuric acid and made up to 500 cm³ in a volumetric flask. A 20.00 cm³ aliquot of this solution required 10.5 cm³ of a 0.0022 mol dm⁻³ solution of K₂Cr₂O₇ for complete oxidation. BONUS MARK How could you check that all of the iron in the FeRICH tablets is in the form of iron(II) and not

iron(III)?

(1 mark)

- 2. Key features of the experiment described include;
 - 1. Initially the sample of E133 of known concentration must be diluted with water to produce dilute samples of known concentration. Five or more solutions must be produced. Possible dilutions would be;

Vol. of 0.20 mol dm ⁻³ solution of E133 / cm ³	Vol. of water added	New conc. of solution of E133 / mol dm ⁻³	Absorbance
10	0	0.20	
8	2	0.16	
6	4	0.12	
4	6	0.08	
2	8	0.04	
0	10	0.00	

- 2. Measure the absorbance of each new known concentration of E133 and record these results in a suitable table.
- 3. Plot a calibration graph of concentration of E133 (x-axis) against absorbance (y-axis).
- 4. Measure the absorbance of the sports drink 'Go, go, go.'
- 5. Use the calibration graph plotted in 3. to determine the concentration of E133 in 'Go, go, go.'

(5 marks)

13.5. Redox titrations

Tablet A

 $5 \text{ Fe}^{2^+} + \text{MnO}_4^- + 8 \text{ H}^+ \rightarrow 5 \text{ Fe}^{3^+} + \text{Mn}^{2^+} + 4 \text{ H}_2\text{O}$ No. of moles in 21.65 cm³ of 0.005 mol dm⁻³ KMnO₄ = 1.08 × 10⁻⁴ mol Therefore, no. of moles of Fe²⁺ in 25.00 cm³ aliquot = (1.08 × 10⁻⁴ mol) × 5 = 5.41 × 10⁻⁴ mol Therefore, no. of moles of Fe²⁺ in 250 cm³ and hence in one of Tablet A = (5.41 × 10⁻⁴ mol) × 10 = 5.41 × 10⁻³ mol (1 mark) Molar mass of FeSO₄ = 151.9 g mol⁻¹

Therefore mass of FeSO4 per tablet = $5.41 \times 10^{-3} \text{ mol} \times 151.9 \text{ g mol}^{-1} = 0.82 \text{ g}$ (1 mark)Therefore Tablet A comes from the IRON TO GO pack.(1 mark)

Tablet B

 $5 \text{ Fe}^{2+} + \text{MnO}_{4}^{-} + 8 \text{ H}^{+} \rightarrow 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$ No. of moles in 19.45 cm³ of 0.010 mol dm⁻³ KMnO₄ = 1.945 × 10⁻⁴ mol Therefore, no. of moles of Fe²⁺ in 25.00 cm³ aliquot = $(1.08 \times 10^{-4} \text{ mol}) \times 5 = 9.725 \times 10^{-4} \text{ mol}$ Therefore, no. of moles of Fe²⁺ in 500 cm³ and hence in two of Tablet B = $(9.725 \times 10^{-4} \text{ mol}) \times 20$ = 0.01945 mol (1 mark) Mass of iron in two tablets of B = 0.01945 mol × 55.8 g mol⁻¹ = <u>1.085 g</u> (1 mark)

Therefore the % by mass of iron in Tablet B = $(1.085 \text{ g} / 2.10 \text{ g}) \times 100\%$ = 51.6 % Therefore <u>Tablet B comes from the **FeRICH** tablets.</u>

(1 mark)

Tablet C

 $6 \text{ Fe}^{2+} + \text{ Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \rightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$ No. of moles in 10.5 cm³ of 0.0022 mol dm⁻³ K₂Cr₂O₇ = 2.31 × 10⁻⁵ mol Therefore, no. of moles of Fe²⁺ in 20.00 cm³ aliquot = (2.31 × 10⁻⁵ mol) × 6 = 1.386 × 10⁻⁴ mol Therefore, no. of moles of Fe²⁺ in 500 cm³ and hence in one of Tablet C = (1.386 × 10⁻⁴ mol / 20) × 500 = 3.465 × 10⁻³ mol (1 mark)

Molar mass of FeSO4.7H2O = $151.9 + (7 \times 18.0) = 277.9 \text{ g mol}^{-1}$ Therefore mass of FeSO4.7H2O per tablet = $3.465 \times 10^{-3} \text{ mol} \times 277.9 \text{ g mol}^{-1} = 0.96 \text{ g}$ (1 mark)Therefore Tablet C comes from the **Fe4U** tablets.(1 mark)

BONUS MARK

Either

Add an excess of zinc to a 25.0 cm³ aliquot of the original solution. This will reduce any Fe³⁺ ions to Fe²⁺ ions. Filter off the unreacted zinc and titrate the mixture against KMnO₄. If the titre is the same (i.e. the amount of KMnO₄ needed for complete oxidation has not changed) then only Fe²⁺ ions were present in the original solution. If the titre has increased (i.e. more KMnO₄ is needed for complete oxidation) then the original sample must have contained some Fe³⁺ ions.

or

Dissolve the tablet in water and add sodium hydroxide solution until present in excess. If Fe^{2+} is present a green precipitate of $[Fe(H_2O)_4(OH)_2]$ would form. Any Fe^{3+} present would form an orange/brown precipitate of $[Fe(H_2O)_3(OH)_3]$.

(1 mark for either method)

13.6. Redox chemistry of transition metals

		reduction			
	VO ₂ ⁺	VO ²⁺	V ³⁺	V ²⁺	
Oxid ⁿ state	<u>+5</u>	<u>+4</u>	<u>+3</u>	<u>+2</u>	
	•	<u>oxidation</u>			

(1 mark for correct oxidation states, 1 mark for correct identification of oxidation and reduction)

(b) (i) The electrode potentials for the V^{3+}/V^{2+} electrode and the VO^{2+}/V^{3+} electrode are each more negative that the NO₃/NO electrode potential. Therefore, NO₃ will initially oxidise V^{2+} to V^{3+}

