Equilibrium

What is a *Reversible Reaction*? Give 2 examples.

Explain what is meant by Equilibrium.

Explain how the equilibrium position is affected by changes in *Concentration*, *Temperature* and *Pressure*.

How is yield related to equilibrium position?

Reversible Reaction:

A reaction that can take place in both directions, e.g.

$$CuSO_4 \cdot 5H_2O_{(s)} \xrightarrow{Heat} CuSO_{4 (s)} + 5H_2O_{(l)}$$

Equilibrium:

- The forward and backward reactions take place at the same rate
- · There is no overall change in the concentration of reactants and products

Effect of Change in Concentration:

The equilibrium position moves to the products side if:

- · the reactant concentration increases (e.g. more reactant is added)
- the product concentration decreases (e.g. product is removed)

Effect of Temperature Change:

Temperature increase: equilibrium position moves in the endothermic direction

Temperature decrease: equilibrium position moves in the exothermic direction

Effect of Pressure Change:

Pressure increase: equilibrium position moves to side with fewer gas molecules

Pressure decrease: equilibrium position moves to side with most gas molecules

Yield & Equilibrium Position:

The yield will be higher if the equilibrium position is further towards the products side

Sulfur

Name 3 natural sources of sulfur.

What is produced in the *Contact Process*?

List the raw materials.

State the 4 steps in the Contact Process, with equations.

Describe the properties of both Dilute Sulfuric Acid & Concentrated Sulfuric Acid.

Give uses of Sulfuric Acid & Sulfur Dioxide.

Sources:

- As the element (underground and near volcanoes)
- As a compound in metal ores, e.g. galena (lead(II) sulfide, PbS)
- · In fossil fuels, e.g. coal, crude oil & natural gas

Contact Process:

Product: Sulfuric acid (H2SO4)

Raw materials: Sulfur (or sulfur dioxide), air, water

Step 1: Sulfur is burned in air to make sulfur dioxide:

$$S_{(g)} + O_{2(g)} \longrightarrow SO_{2(g)}$$

Step 2: SO₂ is mixed with more air and passed over a vanadium(V) oxide catalyst at 450°C, 1-5 atmospheres pressure to make sulfur trioxide:

Step 3: SO3 is dissolved in concentrated sulfuric acid to make oleum:

$$H_2SO_{4(1)} + SO_{3(g)} \longrightarrow H_2S_2O_{7(1)}$$

Step 4: Oleum is mixed with water to produce concentrated sulfuric acid:

$$H_2S_2O_{70} + H_2O_{0} \longrightarrow 2H_2SO_{40}$$

Properties of Sulfuric Acid:

- Dilute sulfuric acid shows the usual reactions of acids, e.g. it reacts with metals, metal oxides, hydroxides and carbonates forming salts called sulfates.
- Concentrated sulfuric acid is a dehydrating/drying agent it removes water.

Uses of Sulfuric Acid:

- · Fertilisers, e.g. ammonium sulphate
- · Paints, pigments, dyes
- · Fibres, plastics

- · Soaps, detergents
- · Car batteries

Uses of Sulfur Dioxide:

- · As a bleach in the manufacture of wood pulp for paper
- · As a food preservative (it kills bacteria)

Haber Process & Fertilisers

What is the *Haber Process*? Give an equation.
Where are the *Raw Materials* obtained from?
What *Temperature*, *Pressure* & *Catalyst* are required?
How can the equilibrium be forced to make more ammonia?

Give uses of ammonia.

Why are fertilisers necessary? Give 4 examples of fertilisers, including formulae.

Haber Process:

An industrial process for the production of ammonia (NH₃) from nitrogen and hydrogen

Equation:
$$N_{2(g)} + 3H_{2(g)} \stackrel{\text{Iron catalyst}}{\longleftarrow} 2NH_{3(g)}$$

Raw Materials:

- Nitrogen extracted from the air (by fractional distillation see card Pink 16)
- Hydrogen from reacting methane with steam or from cracking alkanes

Temperature: 450°C

Pressure: 200 atmospheres

Catalyst: Iron

Increasing the yield:

The ammonia is cooled, so that it condenses into a liquid and can be removed

This makes the equilibrium move to the products side, increasing the yield

Uses of Ammonia:

- · Fertilisers
- Explosives
- · Cleaning products

Fertilisers:

Fertilisers make crops grow bigger and faster

e.g. Ammonium nitrate, NH4NO3

Ammonium sulfate, (NH₄)₂SO₄

Ammonium phosphate, (NH₄)₃PO₄

Potassium sulfate, K2SO4

Fertilisers contain N (Nitrogen), P (Phosphorus) and K (Potassium) which are essential for healthy plant growth