Particles, atomic structure, ionic bonding, the Periodic Table

CORE questions

Core '	1
--------	---

(b)		Describe three things you would see when a small piece of sodium is added to a beaker of water.								
	1.									
	2.									
	3.									
			[3]							

(c) Lithium (Li), sodium (Na), and potassium (K) are in the same group of the Periodic Table. The following table compares the properties and electronic structure of these elements. Suggest a value for the boiling point of sodium and complete the rest of the table.

element	boiling point /°C	reaction with water	electronic structure
lithium	1342	steady reaction	2.1
sodium		rapid reaction	
potassium	760		2.8.8.1

[3]

(d) When potassium burns in chlorine, potassium chloride is formed. Part of the structure of potassium chloride is shown below.

(i)	Describe the type of bonding in potassium chloride.
	[1]
(ii)	State the simplest formula for potassium chloride.
	[1]
iii)	Explain why solid potassium chloride does not conduct electricity.
	[1]

Core 2

(iii) Which one of the following, A, B or C, is a correct representation of an alloy? Put a ring around the correct answer.

			A	В	С	[1]
(b)	Zinc	is a	metal. State three phys	sical properties that all m	netals have in common.	
	1.					
	2.					
	3.	••••				[3]
C 6	ore 3	bon-	.14 is a radioactive isoton	e which is formed in the up	oner atmosphere	
Ĭ			plain the meaning of the t	·	oper aumosphere,	
	(-)	(i)	-			*****
		.,				
		(ii)	isotope			
						[2]
	(b)	Sta	te one medical use of rac	lioactive isotopes.		
						[1]
	(c)	Cor	bon-14 has a nucleon (m nplete the table below to atom of carbon-14.		nd number of particles pres	ent in
			type of particle	type of charge on the particle	number of particles present	
			proton			
			neutron			

type of particle	type of charge on the particle	number of particles present
proton		
neutron		300
electron		

[6]

0620 Cambridge IGCSE Chemistry Specimen Papers (2016)

Paper 1 Question 1

1 The diagrams show the arrangement of particles in three different physical states of substance X.

state 1

state 2

state 3

Which statement about the physical states of substance X is correct?

- A Particles in state 1 vibrate about fixed positions.
- B State 1 changes to state 2 by diffusion.
- C State 2 changes directly to state 3 by condensation.
- D The substance in state 3 has a fixed volume.

Paper 1 Question 3

3 Element Y has a nucleon number of 19 and a proton number of 9.

Which group in the Periodic Table does it belong to?

- C VII
- D VIII

Paper 1 Question 4

4 The nucleon number and proton number of the lithium atom are shown by the symbol ⁷₃Li.

What is the correct symbol for the lithium ion in lithium chloride?

Paper 1 Question 6

6 The table shows the structure of different atoms and ions.

particle	proton number	nucleon number	number of protons	number of neutrons	number of electrons
Mg	12	24	12	W	12
Mg ²⁺	X	24	12	12	10
F	9	19	9	Y	9
F ⁻	9	19	9	10	z

What are the values of W, X, Y and Z?

	W	Х	Y	Z
Α	10	10	9	9
В	10	12	10	9
С	12	10	9	10
D	12	12	10	10

Paper 1 Question 7

7 The diagram shows the structure of an atom.

kev

n = neutron

= electron

Which diagram shows the structure of an isotope of this atom?

Α

В

С

Paper 1 Question 8

8 Which two elements react together to form an ionic compound?

element	electronic structure
R	2,4
T	2,8
X	2,8,1
Z	2,8,7

A R and T

B T and X

C X and Z

D Z and R

Paper 1 Question 11

11 The chemical formulae of two substances, W and X, are given.

W NaAlSi₃O₈

X CaAl₂Si₂O₈

Which statements are correct?

1 W and X contain the same amount of oxygen.

2 W contains three times as much silicon as X.

3 X contains twice as much aluminium as W.

A 1 and 2

B 1 and 3

C 2 and 3

D 1, 2 and 3

Paper 1 Question 28

28 Which diagram could represent the structure of an alloy?

Paper 3 Question 2

(b) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes red-brown fumes were seen just above the liquid surface. After one hour the red-brown colour had spread completely throughout the gas jar.

 	•••••	 	•••••	•••••	 ••••							
												[3]
 		 			 [-]							

EXTENSION question

Extension 1

The element scandium, proton (atomic) number, Z = 21, was discovered by L Nilson in Sweden in 1879.

- (a) It forms only one ion which has the formula 45Sc3+.
 - (i) How many electrons, protons and neutrons are there in this ion?

 number of electrons

 number of protons

 number of neutrons
 - (ii) Predict the electron distribution of this ion.

 [4]

0620 Cambridge IGCSE Chemistry Specimen Papers (2016)

Paper 2 Question 2

2 The diagram shows the diffusion of hydrogen chloride and ammonia in a glass tube.

The gases are given off by the solutions at each end of the tube.

When hydrogen chloride and ammonia mix they produce a white solid, ammonium chloride.

Which line shows where the white solid is formed?

Paper 3 Question 5

(b) The symbols for two isotopes of iron are shown below.

(i) How do these two isotopes differ in their atomic structure?

_		
	11	ı
		ı

(ii) Determine the number of neutrons present in one atom of the isotope $\frac{57}{26}$ Fe.

(iii) Determine the number of electrons in one Fe3+ ion?

Paper 4 Question 2

2 The table gives the composition of three particles.

particle	number of number of electrons		number of neutrons
Α	15	15	16
В	15	18	16
С	15	15	17

(a)	Wh	at is the evidence in the table for each of the following?	
	(i)	Particle A is an atom.	
			[1]
	(ii)	A, B and C are all particles of the same element.	
			[1]
	(iii)	Particles A and C are isotopes of the same element.	
			[2]
(b)	(i)	What is the electronic structure of particle A?	
			[1]
	(ii)	Is element A , a metal or a non-metal? Give a reason for your choice.	
			[1]
[Total: 6]			

Paper 4 Question 3

nitrogen gas.
[3]
b) A sealed container contains nitrogen gas. The pressure of the gas is due to the molecules of
the gas hitting the walls of the container. Use the kinetic theory to explain why the pressure inside the container increases when the
temperature is increased.
[2]

The following apparatus can be used to measure the rate of diffusion of a gas.

The following results were obtained.

gas	temperature /°C	rate of diffusion in cm³/min
nitrogen	25	1.00
chlorine	25	0.63
nitrogen	50	1.05

(c) (i) Explain why nitrogen gas diffuses faster than chlorine gas.

		[2]
(ii)	Explain why the nitrogen gas diffuses faster at the higher temperature.	

Particles, atomic structure, ionic bonding, the Periodic Table – answers

Core 1

(b) any three observations such as:

floats on water moves about bursts into flame fizzes bubbles dissolves disappears goes into a ball

(c) boiling point reaction with water electronic structure

900 – 1100 very vigorous

- (d) (i) ionic/electrovalent
 - (ii) KCl
 - (iii) ions are not free to move

Core 2

- (iii) A
- (b) any three from: conduct heat conduct electricity malleable ductile sonorous shiny

Core 3

- (a) (i) ionising particles given off or named radiation, $\alpha,\,\beta$ and γ
 - (ii) atoms with the same number of protons/same element/same atomic number different numbers of neutrons/different mass numbers
- (b) any suitable such as: finding out how well an organ is carrying out its function treating cancers sterilising surgical instruments
- (c) + 6

none 8

Specimen Paper 1

- **1** D
- **3** C
- **4** C
- **6** D
- **7** A
- 8 C
- **11** B
- **28** D

Specimen Paper 3

2 (b) Any three of:

bromine evaporates/liquid evaporates;

more energetic particles change from liquid to vapour or gas;

diffusion;

random movement of particles / particles move everywhere / <u>air</u> and <u>bromine</u> particles are moving;

(bromine and air) particles get mixed up/collision of <u>bromine</u> and <u>air</u> particles;

Extension 1

- (a) (i) 18e
 - 21p
 - 24n
 - (ii) 2.8.8

Specimen Paper 2

2 D

Specimen Paper 3 Question 5

- 5 (b) (i) number of neutrons/different nucleon number
 - (ii) 31
 - (iii) 23

Specimen Paper 4 Question 2

- 2 (a) (i) same number of protons and electrons
 - (ii) all have the same number of protons/same proton number/same atomic number
 - (iii) same number of protons/same proton number/same atomic number; different number of neutrons/different nucleon number/different mass number:
 - **(b) (i)** 2, 8, 5
 - (ii) non-metal because it accepts electrons / needs 3e to complete outer energy level / because it is in Group V or 5e in outer shell note: need both non-metal and reason for one mark

Specimen Paper 4 Question 3

3 (ii) solid gas

pattern: regular/lattice random/irregular/no pattern;

distance: close far apart/spread out;

movement: vibrate/fixed position moving;

note: comparison must be made

- **(b)** particles have more energy/move faster;
 - collide harder/collide more frequently/more collisions/collide with more force:

allow: molecules instead of particles

- (c) (i) nitrogen has smaller M_{Γ} ;
 - nitrogen (molecules) move faster (than chlorine molecules)/ora; note: comparison must be made
 - (ii) (at higher temperature) molecules move faster/have more energy