iGCSE CIE Physics 0625 (2020 Syllabus) Formula List

General	
Average speed $(ms^{-1}) = \underline{\text{distance } (m)}$	
time (s)	
Average velocity (ms ⁻¹) = displacement (m)	v = <u>s</u>
time (s)	t
Period of a pendulum (s) = total time (s) number of swings	T = <u>t</u> number
Acceleration $(ms^{-2}) = \text{final velocity } (ms^{-1}) - \text{initial velocity } (ms^{-1})$	a = <u>v-u</u>
time (s)	t
Weight (N) = mass (kg) × gravitational field strength (ms^{-2})	F = mg
Note: Earth's gravitational field strength = 10 ms ⁻²	
Force (N) = mass (kg) × acceleration (ms^{-2})	F = ma
Density $(kgm^{-3}) = mass (kg)$	ρ = <u>M</u>
volume (m³)	V
Hooke's law: Force (N) = constant $(Nm^{-1}) \times \text{extension } (m)$	F = kx
Pressure $(Pa) = force(N)$	P = <u>F</u>
area (m²)	A
Fluid Pressure (Pa) = density (kgm^{-3}) × gravitational field strength (ms^{-2} or Nkg^{-1}) × height (m)	P = ρgh
Work (J) = force (N) × distance moved (m)	ΔE = Fd
Power (W) = $work(J)$	$P = \underline{\Delta E}$
time (s)	t
Kinetic Energy (J) = $\frac{1}{2}$ × mass (kg) × velocity ² (ms ⁻¹)	$KE = \frac{1}{2}mv^2$
Gravitational potential energy (J) = mass $(kg) \times \text{gravitational field strength } (ms^{-2} \text{ or } Nkg^{-1}) \times \text{height } (m)$	GPE = mgh
Efficiency (%) = useful power output (W) × 100	Efficiency = \underline{P}_{out}
total power input (W)	P _{in}
Efficiency (%) = useful energy output (J) × 100	Efficiency = \underline{E}_{out}
total energy input (J)	E _{in}
Moment (Nm) = force (N) × perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1d_1=F_2d_2$
Momentum $(kgms^{-1}) = mass (kg) \times velocity (ms^{-1})$	p = mv
Force (N) = $\frac{\text{change in momentum } (kgms^{-1})}{\text{change in momentum } (kgms^{-1})}$	F = <u>Δp</u>
time (s)	t
Impulse (kgms ⁻¹ or Ns) = change in momentum (kgms ⁻¹)	Ft = mv -mu
Centripetal Force (N) = $\frac{\text{mass (kg)} \times \text{velocity}^2 (ms^{-1})}{\text{radius (m)}}$	$F = \frac{mv^2}{r}$
Orbital Period (s) = $2 \times \pi \times \text{radius } (m)$	$T = 2\pi r$
velocity (ms^{-1})	V V
Thermal	
Boyle's Law for changes in gas pressure at constant temperature :	$P_1V_1 = P_2V_2$
pressure ₁ (Pa) × volume ₁ (m^3) = pressure ₂ (Pa)× volume ₂ (m^3)	or
or	PV = constant
pressure $(Pa) \times volume \ (m^3) = constant$	
Energy (J) = mass (kg) × specific heat capacity $(Jkg^{-1} \circ C^{-1})$ × temperature change $(\circ C)$	E = mcΔT
Thermal capacity $(J^{\circ}C^{1})$ = mass (kg) × specific heat capacity $(Jkg^{-1}{\circ}C^{1})$	C = mc
Energy transferred (J) = mass (kg) × specific latent heat (Jkg^{-1})	E = ml
Expansion (m) = linear expansivity (°C¹) × original length (m) × temperature rise (°C)	Expansion = $\alpha I \Delta T$

Electricity	
Current (A) = charge (C)	I = <u>Q</u>
time (s)	t
Voltage (V) = energy transferred (J)	V = <u>E</u>
charge (C)	Q
Voltage (V) = current (A) \times resistance (Ω)	V = IR
Power (W) = current (A) × voltage (V)	P = IV
Power (W) = current ² (A) × resistance (Ω)	$P = I^2R$
Energy transferred (J) = current (A) \times voltage (V) \times time (s)	ΔE = IVt
Energy transferred (J) = power (W) × time (s)	ΔE = Pt
Resistors in series: Total Resistance (Ω) = sum of individual resistors (Ω)	$R_{\text{TOTAL}} = R_1 + R_2 + R_3 + \dots R_n$
$R_1 R_2$	
Resistors in parallel: =1	$\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2} \cdot \cdot \cdot \cdot \frac{1}{R_n}$
total resistance (Ω) sum of individual resistors (Ω)	R_{TOTAL} R_1 R_2 R_n
, , , , , , , , , , , , , , , , , , ,	R = <u>ρΙ</u>
area (m²)	Α
Note: since wires have a circular cross section, area = $\pi \times \text{radius}^2$	
Transformers: voltage in secondary coil (V) = turns on secondary coil	$\underline{V}_s = \underline{N}_s$
voltage in primary coil (V) turns on primary coil	V _p N _p
Transformers: voltage in primary coil (V) = current in secondary coil (A) voltage in secondary coil (V) current in primary coil (A)	$\frac{V_p}{V_s} = \underline{I}_s$
Waves	V _S V _p
	c = fλ
	F = <u>1</u>
Frequency (Hz) = 1 Period (s)	Γ- <u>∓</u>
	n = <u>sin</u> _i
sine of the angle of refraction, r	sin _r
	n = <u>c</u> _v
speed of light in material	C _m
Refractive index =1	n = <u>1</u>
sine of critical angle	sin <i>c</i>
Nuclear	
Radioactive alpha decay: $^{238}_{92}$ Th $\rightarrow ^{234}_{90}$ U + $^{4}_{2}$ He + energy	$_{z}^{A}X \rightarrow _{z-2}^{A-4}Y + _{2}^{4}He$
Radioactive beta decay: $^{209}_{82}\text{Pb} \rightarrow ^{209}_{83}\text{Bi} + ^{0}_{-1}\text{e} + \text{energy}$	$_{z}^{A}X \longrightarrow _{z+1}^{A}Y + _{-1}^{0}e$
Radioactive gamma decay: $^{60}_{27}\text{Co} \rightarrow ^{60}_{27}\text{Co} + \gamma + \text{energy}$	${}_{z}^{A}X \rightarrow {}_{z}^{A}Y + \gamma$
Energy (J) = mass defect (kg) × speed of light ² (ms^{-1})	$E = mc^2$