Biology

Microscopy		
Actual size =	image size	
	magnification	

Chemistry

General	
Number of neutrons = nucleon (mass) number – atomic number	
Quantitative chemistry - Moles	
SOLIDS: Number of moles (mol.) = $\underline{\text{mass } (g)}$ or $\underline{\text{mass } (g)}$ A _r (gmol ⁻¹) M_r (gmol ⁻¹)	$n = \underline{m} = \underline{m}$ $A_r M_r$
LIQUIDS: Number of moles (mol.) = concentration (moldm ⁻³) × volume (dm ³)	n = CV
LIQUIDS: Concentration (moldm ⁻³) × volume (dm ³) = concentration (moldm ⁻³) × volume (dm ³)	$C_1V_1=C_2V_2$
GASES: Volume of a gas (m^3) = number of moles $(mol.) \times 24 (m^3 mol^1)$ (at room temperature and pressure)	V = 24n

Physics

General	
Average speed (ms^{-1}) = <u>distance (m)</u>	
time (s)	
Average velocity $(ms^{-1}) = displacement (m)$	v = <u>s</u>
time (s)	t
Acceleration $(ms^{-2}) = final velocity (ms^{-1}) - initial velocity (ms^{-1})$	a = <u>v-u</u>
time (s)	t
Weight (N) = mass (kg) × gravitational field strength (ms^{-2})	F = mg
Note: Earth's gravitational field strength = 10 ms ⁻²	
Force (N) = mass (kg) × acceleration (ms^{-2})	F = ma
Density $(kgm^{-3}) = mass (kg)$	ρ = <u>Μ</u>
volume (m ³)	V
Hooke's law: Force (N) = constant (Nm^{-1}) × extension (m)	F = kx
Pressure (Pa) = force (N)	P = <u>F</u>
area (m²)	A
Fluid Pressure (Pa) = density $(kgm^{-3}) \times gravitational field strength (ms^{-2} or Nkg^{-1}) \times height (m)$	P = ρgh
Work (J) = force (N) × distance moved (m)	$\Delta E = Fd$
Power (W) = $work(J)$	P = <u>ΔΕ</u>
time (s)	t
Kinetic Energy (J) = $\frac{1}{2} \times \text{mass}(kg) \times \text{velocity}^2(ms^{-1})$	$KE = \frac{1}{2}mv^2$
Gravitational potential energy (J)	GPE = mgh
= mass (kg) × gravitational field strength (ms^{-2} or Nkg^{-1}) × height (m)	
Efficiency (%) = useful power output (W) × 100	Efficiency = <u>P</u> _{out}
total power input (W)	P _{in}
Efficiency (%) = useful energy output (J) × 100	Efficiency = \underline{E}_{out}
total energy input (J)	E _{in}
Moment (Nm) = force (N) × perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1 d_1 = F_2 d_2$

Thermal	
Boyle's Law for changes in gas pressure at constant temperature :	$P_1V_1 = P_2V_2$
pressure ₁ (Pa) × volume ₁ (m^3) = pressure ₂ (Pa)× volume ₂ (m^3)	Or
Or	PV = constant
pressure (Pa) × volume (m ³) = constant	
Energy (J) = mass (kg) × specific heat capacity $(Jkg^{-1} \circ C^{-1})$ × temperature change (°C)	E = mcΔT
Electricity	
Current (A) = <u>charge (C)</u>	I = <u>Q</u>
time (s)	t
Voltage (V) = <u>energy transferred (J)</u>	V = <u>E</u>
charge (C)	Q
Voltage (V) = current (A) × resistance (Ω)	V = IR
Power (W) = current (A) × voltage (V)	P = IV
Power (W) = current ² (A) × resistance (Ω)	$P = I^2 R$
Energy transferred (J) = current (A) × voltage (V) × time (s)	ΔE = IVt
Energy transferred (J) = power (W) \times time (s)	$\Delta E = Pt$
Resistors in series: Total Resistance (Ω) = sum of individual resistors (Ω)	$R_{TOTAL} = R_1 + R_2 + R_3 + R_n$
	$\Gamma_{TOTAL} - \Gamma_1 \Gamma_2 \Gamma_3 \Gamma_{\dots} \Gamma_n$
$\overline{R_1}$ $\overline{R_2}$	
Resistors in parallel: <u>1</u> = <u>1</u>	$\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2} \dots \frac{1}{R_n}$
total resistance (Ω) sum of individual resistors (Ω)	NTOTAL N1 N2 Nn
$\overline{R_1}$	
Resistance (Ω) = resistivity (Ωm) × length (m)	R = <u>ρΙ</u>
area (m²)	A
Note: since wires have a circular cross section, area = $\pi \times radius^2$	
Transformers: voltage in secondary coil (V) = turns on secondary coil	$\underline{V}_{s} = \underline{N}_{s}$
voltage in primary coil (V) turns on primary coil	V _p N _p
Transformers: voltage in primary coil (V) = current in secondary coil (A)	$\underline{V}_{p} = \underline{I}_{s}$
voltage in secondary coil (V) current in primary coil (A)	V _s I _p
Waves	
Wave speed (ms^{-1}) = frequency (Hz) × wavelength (m)	c = fλ
Frequency (Hz) = $\underline{1}$	F = <u>1</u>
Period (s)	Т
Refractive index = <u>sine of the angle of incidence, i</u>	n = <u>sin</u> i
sine of the angle of refraction, r	sin _r
Refractive index = <u>speed of light in vacuum</u>	n = <u>c</u>
speed of light in material	C _m
Refractive index =1	n = <u>1</u>
sine of critical angle	sinc
Nuclear	
Radioactive alpha decay: $\frac{236}{92}$ Th $\rightarrow \frac{234}{90}$ U + $\frac{4}{2}$ He + <i>energy</i>	$A_{z}^{A}X \rightarrow A_{z}^{A}Y + {}_{2}^{4}He$
200 000	$^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + ^{0}_{-1}e$
Radioactive beta decay: ${}^{209}_{82}Pb \rightarrow {}^{209}_{83}Bi + {}^{0}_{.1}e + energy$	
Radioactive beta decay: ${}^{209}_{82}Pb \rightarrow {}^{209}_{83}Bi + {}^{0}_{-1}e + energy$ Radioactive gamma decay: ${}^{60}_{27}Co \rightarrow {}^{60}_{27}Co + \gamma + energy$	${}^{A}_{Z}X \longrightarrow {}^{A}_{Z}Y + \gamma$