Biology

Microscopy
Actual size $=\frac{\text { image size }}{\text { magnification }}$

Chemistry

General

Number of neutrons = nucleon (mass) number - atomic number

Quantitative chemistry - Moles

$\text { SOLIDS: Number of moles }(m o l .)=\frac{\operatorname{mass}(g)}{\mathrm{A}_{\mathrm{r}}\left(\mathrm{gmol}^{-1}\right)} \text { or } \frac{\operatorname{mass}(g)}{\mathrm{M}_{\mathrm{r}}\left(\mathrm{gmol}^{-1}\right)}$	$n=\frac{m}{A_{r}}=\frac{m}{M_{r}}$
LIQUIDS: Number of moles (mol.) = concentration ($\mathrm{moldm}{ }^{-3}$) \times volume $\left(\mathrm{dm}^{3}\right)$	$\mathrm{n}=\mathrm{CV}$
LIQUIDS: Concentration $\left(\mathrm{moldm} \mathrm{m}^{-3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)=$ concentration $\left(\mathrm{moldm}{ }^{-3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$	$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
GASES: Volume of a gas $\left(\mathrm{m}^{3}\right)=$ number of moles $(\mathrm{mol}.) \times 24\left(\mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$ (at room temperature and pressure)	$V=24 n$

Physics

General	
$\text { Average speed }\left(m s^{-1}\right)=\frac{\text { distance }(m)}{\text { time }(s)}$	
$\text { Average velocity }\left(m s^{-1}\right)=\frac{\text { displacement }(m)}{\text { time }(s)}$	$v=\frac{s}{t}$
$\text { Acceleration }\left(m s^{-2}\right)=\frac{\text { final velocity }\left(m s^{-1}\right)-\text { initial velocity }\left(m s^{-1}\right)}{\text { time }(s)}$	$a=\frac{v-u}{t}$
Weight $(N)=$ mass $(\mathrm{kg}) \times$ gravitational field strength $\left(\mathrm{ms}^{-2}\right)$ Note: Earth's gravitational field strength $=10 \mathrm{~ms}^{-2}$	$\mathrm{F}=\mathrm{mg}$
Force (N) = mass (kg) \times acceleration $\left(\mathrm{ms}^{-2}\right)$	$\mathrm{F}=\mathrm{ma}$
$\text { Density }\left(\mathrm{kgm}^{-3}\right)=\frac{\operatorname{mass}(\mathrm{kg})}{\text { volume }\left(\mathrm{m}^{3}\right)}$	$\rho=\frac{M}{V}$
Hooke's law: Force $(N)=$ constant $\left(\mathrm{Nm}^{-1}\right) \times$ extension (m)	$F=k x$
$\text { Pressure }(P a)=\frac{\text { force }(N)}{\text { area }\left(m^{2}\right)}$	$P=\frac{F}{A}$
Fluid Pressure (Pa) $=$ density $\left(\mathrm{kgm}^{-3}\right) \times$ gravitational field strength $\left(\mathrm{ms}^{-2}\right.$ or $\left.\mathrm{Nkg}^{-1}\right) \times$ height (m)	$P=\rho g h$
Work (J) $=$ force (N) \times distance moved (m)	$\Delta \mathrm{E}=\mathrm{Fd}$
$\operatorname{Power}(W)=\frac{\operatorname{work}(J)}{\text { time }(s)}$	$P=\frac{\Delta E}{t}$
Kinetic Energy (J) $=1 / 2 \times$ mass $(\mathrm{kg}) \times$ velocity $^{2}\left(\mathrm{~ms}^{-1}\right)$	$K E=1 / 2 m v^{2}$
```Gravitational potential energy (J) = mass (kg) }\times\mathrm{ gravitational field strength (ms or Nkg```	$G P E=m g h$
$\text { Efficiency }(\%)=\frac{\text { useful power output }(W)}{\text { total power input }(W)} \times 100$	$\text { Efficiency }=\underline{P}_{\text {out }}$
$\text { Efficiency }(\%)=\frac{\text { useful energy output }(\mathrm{J})}{\text { total energy input }(\mathrm{J})} \times 100$	$\begin{array}{r} \text { Efficiency = }=\underline{E}_{\text {out }} \\ \mathrm{E}_{\text {in }} \end{array}$
Moment ( Nm ) $=$ force ( N$) \times$ perpendicular distance from pivot ( m )	$\mathrm{M}=\mathrm{Fd}$
Sum of clockwise moments ( Nm ) = sum of anticlockwise moments ( Nm )	$\mathrm{F}_{1} \mathrm{~d}_{1}=\mathrm{F}_{2} \mathrm{~d}_{2}$

Thermal

Boyle's Law for changes in gas pressure at constant temperature: pressure $_{1}(\mathrm{~Pa}) \times$ volume $_{1}\left(m^{3}\right)=$ pressure $_{2}(\mathrm{~Pa}) \times \operatorname{volume}_{2}\left(m^{3}\right)$   or pressure $(\mathrm{Pa}) \times$ volume $\left(m^{3}\right)=$ constant	$\begin{gathered} \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \quad \text { or } \\ \mathrm{PV}=\text { constant } \end{gathered}$
Energy ( $J$ ) $=$ mass $(\mathrm{kg}) \times$ specific heat capacity $\left(\mathrm{Jkg}^{\left.-1{ }^{\circ} \mathrm{C}^{-1}\right) \times \text { temperature change }\left({ }^{\circ} \mathrm{C}\right)}\right.$	$\mathrm{E}=\mathrm{mc} \Delta \mathrm{T}$
Electricity	
$\text { Current }(A)=\frac{\text { charge }(C)}{\text { time }(s)}$	$I=\underset{\mathrm{Q}}{\mathrm{t}}$
Voltage $(V)=\frac{\text { energy transferred ( } J \text { ) }}{\text { charge }(C)}$	$V=\frac{E}{Q}$
Voltage $(V)=$ current $(A) \times$ resistance $(\Omega)$	$\mathrm{V}=\mathrm{I} \mathrm{R}$
Power $(W)=$ current $(A) \times$ voltage $(V)$	$\mathrm{P}=\mathrm{IV}$
Power (W) = current ${ }^{2}(A) \times$ resistance ( $\Omega$ )	$P=I^{2} R$
Energy transferred (J) = current (A) $\times$ voltage ( $V$ ) $\times$ time ( $s$ )	$\Delta \mathrm{E}=\mathrm{IVt}$
Energy transferred (J) = power ( $W$ ) $\times$ time ( $s$ )	$\Delta \mathrm{E}=\mathrm{Pt}$
Resistors in series: Total Resistance $(\Omega)=$ sum of individual resistors $(\Omega)$	$\mathrm{R}_{\text {TOTAL }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots \mathrm{R}_{\mathrm{n}}$
	$\frac{1}{R_{\text {TOTAL }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \cdots \frac{1}{R_{n}}$
$\text { Resistance }(\Omega)=\frac{\text { resistivity }(\Omega m) \times \text { length }(m)}{\text { area }\left(m^{2}\right)}$   Note: since wires have a circular cross section, area $=\pi \times$ radius 2	$R=\frac{\rho l}{A}$
Transformers: $\frac{\text { voltage in secondary coil }(V)}{\text { voltage in primary coil }(V)}=\frac{\text { turns on secondary coil }}{\text { turns on primary coil }}$	$\underline{V}_{s}=\frac{N_{s}}{V_{p}}$
Transformers: voltage in primary coil (V) = current in secondary coil (A) voltage in secondary coil (V) current in primary coil (A)	$\begin{aligned} & \underline{V_{p}}=\underline{I}_{s} \\ & V_{s}=I_{p} \end{aligned}$
Waves	
Wave speed $\left(m s^{-1}\right)=$ frequency $(\mathrm{Hz}) \times$ wavelength $(m)$	$\mathrm{c}=\mathrm{f} \lambda$
$\text { Frequency }(\mathrm{Hz})=\frac{1}{\text { Period }(s)}$	$\mathrm{F}=\underline{1}$
$\text { Refractive index }=\frac{\text { sine of the angle of incidence, } i}{\text { sine of the angle of refraction, } r}$	$n=\frac{\sin _{i}}{\sin _{r}}$
$\text { Refractive index }=\frac{\text { speed of light in vacuum }}{\text { speed of light in material }}$	$n=\begin{array}{r} \underline{c}_{\underline{v}} \\ c_{m} \end{array}$
$\text { Refractive index }=\frac{1}{\text { sine of critical angle }}$	$n=\frac{1}{\sin c}$
Nuclear	
Radioactive alpha decay: ${ }_{92}^{238} \mathrm{Th} \rightarrow{ }_{90}^{234} \mathrm{U}+{ }_{2}^{4} \mathrm{He}+$ energy	${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{\mathrm{Z} \cdot 2}^{\mathrm{A} \cdot 4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
Radioactive beta decay: ${ }_{82}^{209} \mathrm{~Pb} \rightarrow{ }_{83}^{209} \mathrm{Bi}+{ }_{-1}^{0} \mathrm{e}+$ energy	${ }_{2}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}+1}^{\mathrm{A}} \mathrm{Y}+{ }_{-1}^{0} \mathrm{e}$
Radioactive gamma decay: ${ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{27}^{60} \mathrm{Co}+\gamma+$ energy	${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z}^{A} \mathrm{Y}+\gamma$
Energy ( $J$ ) = mass defect ( kg ) $\times$ speed of light ${ }^{2}\left(\mathrm{~ms}^{-1}\right)$	$\mathrm{E}=\mathrm{mc}^{2}$

