Test yourself

Chapter 13

1 What is the name of the following hydrocarbon?

CH₃CH₂CH₂CH₂CH₂CH₂CH₃

- **A** Heptane
- **B** Octane
- **C** Hexane
- **D** Decane
- To which class of organic compounds does ethanal, CH₃CHO, belong?
 - **A** Alcohols
 - **B** Aldehydes
 - **C** Esters
 - **D** Carboxylic acids
- **3** Which of the following shows the displayed formula of butane?
 - $\boldsymbol{A} \qquad C_4 H_{10}$
 - **B** CH₃CH₂CH₂CH₃

 - D

- 4 Which one of the following is an isomer of hexane?
 - **A** 2,3-dimethylbutane
 - **B** 2,3-dimethylpentane
 - **C** 2-methylbutane
 - **D** 3-methylhexane
- Which one of the following species could act as a nucleophile in an organic reaction?
 - **A** Ammonia, NH₃
 - **B** Bromine, Br₂
 - C Chlorine, Cl₂
 - **D** Hydrogen ion, H⁺
- When the C–Br bond in bromomethane breaks in a process known as homolytic fission, the equation is:

$$CH_3$$
-Br $\rightarrow CH_3$ • + Br•

The two species formed are called ...

- **A** atoms
- **B** free radicals
- **C** molecules
- **D** ions
- What is the approximate bond angle in a molecule of ethene?
 - **A** 90°
 - **B** 109.5°
 - **C** 120°
 - **D** 180°

8 What type of organic reaction is shown in the following equation?

$$CH_2=CHCH_3 + H_2 \rightarrow CH_3CH_2CH_3$$

- **A** Addition
- **B** Elimination
- **C** Hydrolysis
- **D** Substitution
- 9 1,2-dichloroethene, C₂H₂Cl₂, can exhibit which form of isomerism?
 - **A** Structural isomerism (chain isomerism)
 - **B** Structural isomerism (functional group isomerism)
 - C Optical isomerism
 - **D** *Cis–trans* isomerism
- Which of the following molecules has a chiral centre correctly labelled with an asterisk?
 - A CH₃C*HClCH₃
 - **B** CH₃C*HClCH₂Br
 - C HOCH₂C*H(OH)CH₂OH
 - \mathbf{D} CH₃C*Br₂CH₃