Η	1	2	3	4	5	6
1	Ionic compound	Bauxite	Zn + H₂SO₄ →ZnSO₄ + H₂ reduced? oxidised?	Opposite charges attract	<i>Soluble metal hydroxide</i>	$AI^{3+} + 3e^{-} \rightarrow AI$
2	Anode	OILRIG	<i>Will not pass electric current in solid state</i>	Metal oxides		Reduction
3	Metal extraction	Cryolite	Anode must be periodically replaced	Cathode	Stainless Steel	E.g. improves the appearance of an object or improves its resistance to corrosion
4	Pig Iron	Gain of electrons	Anode half equation for the electrolysis of molten zinc chloride?	dísplacement	Extraction of Al from its ore	Supplies electrons
5	reactivity series	OILRIG	steel case graphite ande graphite ande graphite attraction molten aluminium	Downside of electrolysis	Gain of O2	Electrolyte
6	Oxidation	Electrostatic attractions	Half equation	High carbon steel	Electrons are removed here	Manganese

Η	1	2	3	4	5	6
1	lonic compound	Bauxite	Used to make soap and paper	?	Explain why electrolysis of	$Al^{3+} + 3e^{-} \rightarrow Al$
2	Anode	$\underline{0^{\circ}} \rightarrow \underline{}^{+}$	Will not pass electric current in	Used to sterilise drinking water and in plastics manufacture	KCl ₍₁₎ yields K ₍₁₎	?
3	Metal extraction	Cryolite	?	Cathode	Saves a large amount of energy	E.g. improves the appearance of an object or improves its resistance to corrosion
4	?	Cathode half equation for electrolysis of molten lead bromide?	Anode half equation for the electrolysis of molten zinc chloride?	Products from electrolysis of copper sulfate solution?	Extraction of Al from its ore	Supplies electrons
5	Describe how to electroplate a nickel bracelet with silver metal. Why is this useful?	OILRIG	steel case graphite ande o o o o o o o o o o o o o o o o o o o	Downside of electrolysis	?	Electrolyte
6	Oxidation	?	Half equation	How is copper purified using electrolysis?	Electrons are removed here	$ZH^*_{(g)} + ___ \rightarrow ___$

F	1	2	3	4	5	6	
1	lonic compound	Aluminium ore, primary source of Al2O3	Used to make soap and paper	$\begin{array}{c} \leftarrow \begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \end{array} \end{array} \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \end{array} \\ \leftarrow \\ \leftarrow$	Explain why electrolysis of	Inert	
2	Anode	O ₂ gas produced at the anode reacts to form CO ₂	Will not conduct electricity when solid	Used to sterilise drinking water and in plastic manufacture	molten potassium chloride produces potassium metal	Al ³⁺ ions gain 3e ⁻ to make Al metal	
3	Metal extraction	Cryolite	Why do calcium ions move to	Cathode	Saves a large amount of energy	E.g. improves the appearance of an object or improves its resistance to corrosion	
4	Cl ⁻ ions lose an electron to form Cl atoms	Ainti Constantia Const	Product at the anode in the electrolysis of molten zinc	Products from electrolysis of copper sulfate solution?	Extraction of Al from its ore	Supplies electrons	
5	Describe how to electroplate a nickel bracelet with silver metal.	OILRIG	steel case graphite anode for the standard of	Downside of electrolysis	Will conduct electricity if molten or in	Electrolyte	
6	Oxidation	Products of electrolysis of	When the potassium ions reach the negative electrode they turn into	How is copper purified using electrolysis?	Electrons are removed here	Name the 2 types of positive ion in sodium chloride solution	

F	1	2	3	4	5	6
1	lonic compound	Aluminium ore, primary source of Al2O3	2	$\begin{array}{c} \leftarrow \bullet & \leftrightarrow \\ \leftarrow \bullet & \leftrightarrow \\ \leftarrow \bullet & \leftrightarrow \\ \bullet & \leftarrow \bullet \\ \bullet & \leftarrow \bullet \end{array}$	Explain why electrolysis of molten potassium	Inert
2	Anode	O ₂ gas produced at the anode reacts to form CO ₂	Will not conduct electricity when	Used to sterilise drinking water and in plastic manufacture	chloride produces potassium metal and	Al ions gain 3e ⁻ to make Al metal
3	2	Cryolite	Why do calcium ions move to the	Cathode	Saves a large amount of energy	2
4	Cl ⁻ ions lose an electron to form Cl atoms	2	Product at the anode in the electrolysis of molten zinc chloride?	Products from electrolysis of copper sulfate solution?	Extraction of Al from its ore	Supplies electrons
5	Describe how to electroplate a nickel bracelet with silver metal.	OILRIG	steel case graphite anode of the cathode graphite cathode molten aluminium	2	Will conduct electricity if molten or in solution	Electrolyte
6	Oxidation	Products of electrolysis of	When the potassium ions reach the negative electrode they turn into potassium?	How is copper purified using electrolysis?	2	Name the 2 types of positive ion in sodium chloride solution

Can you	8	۲	©
a) define ' <i>electrolysis</i> ' and state the requirements for the process to take place			
b) predict the products of the electrolysis of binary ionic compounds in the molten state			
c) describe the use of electrolysis of molten compounds in the extraction of metals			
d) explain how aluminium is extracted, in detail, and explain why the anode must be continually replaced			
e) predict the products of the electrolysis of aqueous solutions containing a single ionic compound			
f) represent the relevant reactions at the electrodes, for a given process, as half equations (HT only)			

Also important:

(Chemistry) Required practical 3: investigate what happens when aqueous solutions are electrolysed using inert electrodes. This should be an investigation involving developing a hypothesis. AT skills covered by this practical activity: 3, 7 and 8

(Science Trilogy) Required practical 3: investigate what happens when aqueous solutions are electrolysed using inert electrodes. This should be an investigation involving developing a hypothesis. AT skills covered by this practical activity: 3 and 7