F	1	2	3	4	5	6
1	conservation of energy	energy transferred to surroundings	Products Products Reactants Direction of reaction	Cell voltage depends on		endothermic reaction
2	the minimum amount of energy required to react	Connected in series		successful collision of particles	KD Reactants	thermal decomposition
3	Sports injury pack	energy level diagram	calcium carbonate → calcium oxide + carbon dioxide	Fuel cells	<i>Produces a rise in temperature</i>	battery
4	self-heating cans		Hydrogen fuel cell	temperature of surroundings decreases	overall energy in the universe is equal before and after reaction	A+B Heat Out
5	exothermic reaction	Thermometer	Rechargeable cells	activation energy	product molecules contain less energy than reactant molecules	C
6	surroundings increase in temperature	Hydrochloric Acid Magnesium Ribbon	Simple cell	collisions require sufficient energy for reaction to occur	Only product is water	combustion, neutralisation & oxidation

F	1	2	3	4	5	6
1	conservation of energy	energy transferred to surroundings	Products Products Reactants Direction of reaction	?		endothermic reaction
2	the minimum amount of energy required to react	?		successful collision of particles	Gigg reactants reaction progress	thermal decomposition
3	?	energy level diagram		→ calcium oxide + dioxide		?
4	self-heating cans		Hydrogen fuel cell	temperature of surroundings decreases	overall energy in the universe is equal	A+B Heat Out
5	exothermic	Thermometer	Rechargeable cells	activation energy	product molecules contain less energy than reactant molecules	Reaction Progression
6	surroundings increase in temperature	Hydrochloric Acid Magnesium Ribbon	?	collisions require sufficient energy for reaction to occur	?	combustion, neutralisation & oxidation

Η	1	2	3	4	5	6
1	conservation of energy	energy transferred to surroundings	All Products	energy released by new bonds > energy needed to break existing bonds		endothermic reaction
2	H ₂ →2H ⁺ +2e ⁻ O ₂ +4H ⁺ +4e ⁻ →2H ₂ O	reactant bonds broken by energy input	Reactants Energy absorbed Direction of reaction	successful collision of particles	AGine Resclambs	thermal decomposition
3	bond energies	energy level diagram		nate \rightarrow calcium bon dioxide	Reaction progress	
4	self-heating cans	existing bonds	led to break is greater than eleased from	HOW TO MEASURE THE ENERGY CHANGE IN A METAL DISPLACEMENT REACTION?	overall energy in the universe is equal before and after reaction	A+B Heat Out
5	overall energy change for a reaction	Thermometer	exothermic reaction	activation energy	product molecules contain less energy than reactant molecules	C +
6	surroundings increase in temperature	Hydrochloric Acid Magnesium Ribbon	temperature of surroundings decreases	collisions require sufficient energy for reaction to occur	<i>energy given out by formation of product bonds</i>	combustion, neutralisation & oxidation

Η	1	2	3	4	5	6
1	conservation of energy	energy transferred to surroundings	Reactants Products Energy absorbed Direction of reaction	energy released by new bonds > energy needed to break existing bonds	?	endothermic reaction
2	$H_2 \rightarrow 2H^+ + 2e^-$ $4e^- + O_2 + 4H^+ \rightarrow 2H_2O$	reactant bonds broken by energy input		?	AGints	thermal decomposition
3	bond energies	?		→ calcium oxide + dioxide	Products Reaction progress	
4	self-heating cans	existing bonds	led to break is greater than eleased from	how to measure the energy change in a metal displacement reaction?	overall energy in the universe is equal	A+B Heat Out
5	overall energy change for a reaction	Cotton Wool Hydrochloric Acid Magnesium Ribbon	temperature of surroundings decreases	activation energy	product molecules contain less energy than reactant molecules	Reaction Progression
6	?		?	collisions require sufficient energy for reaction to occur	<i>energy given out by formation of product bonds</i>	?

5.5 Energy changes (AQA Trilogy) revision checklist

Can you	8	÷	٢
a) define 'conservation of energy' in the context of chemical reactions			
b) describe the terms 'exothermic' and 'endothermic', giving examples of both type			
c) distinguish between exothermic and endothermic reactions on the basis of the temperature change of the surroundings			
d) draw reaction profiles (energy level diagrams) for exothermic/endothermic reactions showing relative energies of reactants and products, the activation energy and the overall energy change			
e) use reaction profiles to identify reactions as exothermic or endothermic			
f) explain that the activation energy is the energy needed for a reaction to occur			
g) explain chemical reactions in terms of energy transfers			
h) explain why a reaction is either exothermic or endothermic			
i) [HT only] describe bond making and bond making in terms of energy transfers			
j) [HT only] calculate the energy transferred in chemical reactions using bond energies supplied			
k) describe the operation of a simple cell, battery and rechargeable cell			
I) interpret data for relative reactivity of different metals and evaluate the use of cells			
m) evaluate the use of hydrogen fuel cells in comparison with rechargeable cells and batteries			
n) [HT only] write the half equations for the electrode reactions in the hydrogen fuel cell			