H	1	2	3	4	5	6
1	Number of molecules in 88 g of CO_{2} ?	Burning Mg in air results in a product of greater mass	sum of reactant M_{r} = sum of product M_{r}	No of electrons in one mole of electrons?	Law of constant composition	It is not always possible to obtain the calculated theoretical mass of a product
2	between 2CO and CO_{2} ?	$\mathbf{M}_{\boldsymbol{r}}$	Balanced symbol equations	g / dm^{3}	Law of conservation of mass	6.02×1023
3		\% yield	24 dren 3	Inacatalyticconverter, $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ If0.4moles ofcarbonmonoxidereact, how manymoles of carbon dioxidearemade?		Change in mass in non-enclosed system
4	Avogadro constant	Balanced symbol equation	Product mass = reactant mass	Mass of 0.1 moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$?	Mol/dm ${ }^{3}$	Relative formula mass
5	Atom Economy: Compare $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$ with $\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{KOH} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KNO}_{3}$		$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ If $25.0 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$ reacts with $23.9 \mathrm{~cm}^{3}$ of HC 1 , what is the concentration of the acid?		moles	Atom economy
6	Loss of gas into the air for example	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ How much sodium chloride is possible from reacting 49 sodium hydroxide?		Same volume at same temperature and pressure	Why use a reactant in excess?	$\mathrm{CaCL}_{3} \rightarrow \mathrm{CaO}+\mathrm{CD}_{2}$ Theoretical mass of CaO when IDOg CaCD_{3} decampases?

H	1	2	3	4	5	6
1	Number of molecules in 88 g of CO_{2} ?		sum of reactant M_{r} = sum of product M_{r}	No of electrons in one mole of electrons?	Law of constant composition	It is not always possible to obtain the calculated theoretical mass ofa product
2	Difference between 2CO and	$\mathbf{M}_{\boldsymbol{r}}$	Balanced symbol equations	g / dm^{3}		6.02×1023
3		\% yield		Incactalyticoonverter, $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ If0.4molesof carbonmonoxidereact howmanymolesofcarbon dioxidearemade?		Change in mass in nonenclosed cuctom
4		Balanced symbol equation	Product mass = reactant mass	Mass of 0.1 moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$?	Mol/dm ${ }^{3}$	Relative formula mass
5	Atom Economy: Compare $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$ with $\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{KOH} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KNO}_{3}$		$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ If $25.0 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$ reacts with $23.9 \mathrm{~cm}^{3}$ of HC 1 , what is the concentration of the acid?		moles	
6	Loss of gas into the air for example	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ How much sodium chloride is possible from reacting 49 sodium hydroxide?			Why use a reactant in excess?	$\mathrm{CaCL}_{3} \rightarrow \mathrm{CaD}+\mathrm{CD}_{2}$ Thearetical mass of CaD when IDOg CaCD_{3} decamposes?

F	1	2	3	4	5	6
1	No atoms are made or lost in a chemical reaction	Burning Mg in air results in a product of greater mass	sum of reactant M_{r} = sum of product M_{r}	A_{r}	Law of constant composition	It is not always possible to obtain the calculated theoretical mass of a product
2	Difference between 2CO and	$\mathbf{M}_{\boldsymbol{r}}$	Balanced symbol equations	g / dm^{3}	$\begin{gathered} \text { Balance... } \\ \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4} \\ +\mathrm{H}_{2} \mathrm{O} \end{gathered}$	solution
3	How many atoms of each clement in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$?	\% yield	Relative atomic mass	solute	Mass volume	Observed change in mass in open system
4	Loss of gas into the air for example	Balanced symbol equation	Product mass = reactant mass	$\begin{gathered} \mathrm{M}_{\mathrm{r}} \text { of } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} ? \end{gathered}$	Sustainable development	Relative formula mass
5	Making a measurement always result in uncertainty. What reasons are there for this?		$\% \text { Yield }=\frac{\text { Mass of product actually made }}{\text { Maximum theoretical mass of product }} \times 100$		Law of conservation of mass	Atom economy
6	Word equation	Reversible reaction, loss of product or unexpected reaction	$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$ 120g of C produces 440 g of CO_{2}. How much O_{2} reacted?		Actual yield	s口/vent

F	1	2	3	4	5	6
1	No atoms are made or lost in a chemical reaction	Burning Mg in air results in a product of greater mass	sum of reactant M_{r} = sum of product Mr_{r}	A_{r}		It is not always possible to obtain the calculated theoretical mass ofa product
2	Difference between 2CO and		Balanced symbol equations	g / dm^{3}	Balance... $\begin{gathered} \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4} \\ +\mathrm{H}_{2} \mathrm{O} \end{gathered}$	solution
3	How many atoms of each clement in $\left(\mathrm{nH}_{4}\right)_{2} \mathrm{SO}_{4}$?	\% yield	Relative atomic mass		Mass: olume	Observed change in mass in open system
4		Balanced symbol equation	Product mass = reactant mass	$\begin{gathered} \mathrm{M}_{r} \text { of } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} ? \end{gathered}$	Sustainable development	Relative formula mass
5	Making a meas result in uncertai are ther	rement always nty. What reasons for this?	$\%$ Yield $=\frac{\text { Mass of p }}{\text { maximum }}$	tactully made $\times 100$	Law of conservation of mass	
6		Reversible reaction, loss of product or unexpected reaction	$C_{(s)}+O_{2}$ 1209 of C produc How much	$\begin{aligned} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \\ & \text { s } 444 \mathrm{~g} \text { of } \mathrm{CO}_{2} \text {. } \\ & \text { s reacted? } \end{aligned}$	Actual yield	s口/vent

$\left.\begin{array}{|l|l|l|}\hline \text { Can you... } & \text { State the law of conservation of mass and appreciate that no atoms are lost or made during a chemical reaction } \\ \hline \text { a) } & \text { Sta } \\ \hline \text { b) } & \text { correctly use the multipliers in equations in normal script before a formula and in subscript within a formula } \\ \hline \text { c) } & \text { explain any observed changes in mass (in open systems) during a chemical reaction, given the balanced symbol equation for the } \\ \text { reaction and explain these changes in terms of the particle model }\end{array}\right]$
t) calculate volumes of gaseous reactants and products from a balanced equation and a given volume of a gaseous reactant or product

