	1	2	3	4	5	6
1	half-equations for electrode reactions	cell EMF	2	Zn Zn ²⁺ Cu ²⁺ Cu	rechargeable cell	298 K, 100 kPa and 1.00 mol dm ⁻³ solution of ions
2	fuel cell	electrode potentials	alkaline hydrogen- oxygen fuel cell		Positive electrode: $Li^+ + CoO_2 + e^- \rightarrow Li^+[CoO_2]^-$ Negative electrode: $Li \rightarrow Li^+ + e^-$	
3	predicting the direction of simple redox	e.g. mobile phones, laptops or tablets	reference cell	standard electrode potential	2	benefits and risks to society associated with using different types of cells
4	strongest oxidising agent	2	feasibility of a reaction	the equilibrium with the more negative E° value will move to the left	electrochemical cells as a commercial source of electrical energy	Pure Hydrogen
5		non- rechargeable cell	$\begin{array}{c} \begin{array}{c} e \\ \hline \\ post \\ Zn \\ electrode \\ \hline \\ \\ zn(s) \rightarrow Zn^{2*}(aq) + 2e \\ \hline \\ Anode \\ \end{array} \begin{array}{c} \begin{array}{c} e \\ No_{3} \\ \hline \\ No_{4} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	salt bridge	weakest reducing agent	Molar H ⁺ at 25 °C
6	importance of the conditions when measuring the electrode potential, E	lithium cell		Li Li+ Li+ <i>,</i> COO2 LiCoO2 Pt	standard hydrogen electrode (she)	2

Electrode Potentials