	1	2	3	4	5	6
1	half-equations for electrode reactions	cell EMF	E	Zn Zn ²⁺ Cu ²⁺ Cu	rechargeable cell	298 K, 100 kPa and 1.00 mol dm ⁻³ solution of ions
2	fuel cell	electrode potentials	alkaline hydrogen- oxygen fuel cell	how can electrode reactions be used to generate an electrical current?	Positive electrode: $Li^+ + CoO_2 + e^- \rightarrow Li^+[CoO_2]^-$ Negative electrode: $Li \rightarrow Li^+ + e^-$	
3	predicting the direction of simple redox reactions	e.g. mobile phones, laptops or tablets	reference cell	standard electrode potential	definition of reducing agent	benefits and risks to society associated with using different types of cells
4	strongest oxidising agent	electrochemical series	feasibility of a reaction	the equilibrium with the more negative E° value will move to the left	electrochemical cells as a commercial source of electrical energy	Pure Hydrogen
5	Pt electrodes	non- rechargeable cell	post Zn electrode Vn_{3} electrode Zn_{2n}^{2+}	salt bridge	weakest reducing agent	Molar H ⁺ at 25 °C Molar H ⁺ at 25 °C Platinum electron coded with platinum black
6	importance of the conditions when measuring the electrode potential, E	lithium cell		Li Li+ Li+, COO2 LiCoO2 Pt	standard hydrogen electrode (she)	most positive standard electrode potential

Electrode Potentials